Topology of Metric Spaces

Definition of Open & Closed Balls

Definition Open Balls Let (X,d) be a metric space. Then for any $x \in X$, and for any $r \in (0,\infty)$, the open ball centered at x of radius r is $B(x,h) = \{y \in X : d(x,y) < h\}$ Definition Closed Balls Let (X,d) be a metric space. Then for any $x \in X$ and $r \in (0,\infty)$, the closed ball centered at x of radius r is $\overline{B}(x,h) = \{y \in X : d(x,y) \leq h\}$ Examples of Open and Closed Balls iii) Classical example: In metric (Rid1) i) In (R^2, d_2) , $d_{2}(x,y) = \int_{-\infty}^{2} |x_{i}-y_{i}|^{2}$ $\frac{c_1}{d_1(x,y)} = |x-y|$ Open ball B(x,h) = (x-h, x+h)The open ball looks like the following : B(x,r) ~ xts 25 center at ii) Consider the space (C([a, b]), doo) $d_{\infty}(f,g) = \sup\{|f(x)-g(x)| : x \in [a,b]\}$ The open ball $B(f_1r)$ consists of all continuous functions $f' \in C([a, b])$ whose graphs lie whithin a band of vertical width of 2r centered at xo

Neighbourhood

Definition: Neighbourhood

Let (X,d) be a metric space. A neighbourhood of the point $x \in X$ is any open ball in (X,d) with center x

Interior, Exterior and Boundary Points

Suppose that (X,d) is a metric space and $A \subseteq X$

Definition Interior Points

An interior point yEX of A is an element for which the open, ball B(y. E) is contained entirely within A for some E>O

The interior of A is the set of all interior points, denoted by A°

A° = set of all interior points

Definition, Boundary points

The element yEX is a boundary point of A if and only if

 $\forall \epsilon > 0$, the open ball centered at y; $B(y, \epsilon)$ hits the set and hits outside the set.

 $B(y_1 \epsilon) \cap A \neq \phi$ and $B(y_1 \epsilon) \cap A^{\epsilon} \neq 0$

The boundary of A is the set of all boundary points of A denoted by ∂A ∂A= set of all boundary points

Definition Exterior Points

An element yex is an exterior point of A if and only if

3 E>O for which

 $B(y,\varepsilon) \leq A^{c}$

The exterior of A is the set of all exterior points denoted by A^e

A^e = set of all exterior points

Disjoint Union Property for Interior, Exterior and Boundary

Theorem Disjoint Unions Let (X,d) be a methic space, and $A \subset X$. Then $X = \partial A \sqcup A^e \sqcup A^o$ That is the following holds: 1) $A^e \cup A^o \cup \partial A = X$ 2) $\partial A \cap A^e = \phi$ 3) $\partial A \cap A^e = \phi$ 4) $A^o \cap A^e = \phi$ Proof: Suppose $A \neq \phi$ 1) Suppose $y \in X$ is an interior point. Then by defn of interior point

And thus, we can draw the following conclusions: (i) $B(y_1 \epsilon) \leq A \Rightarrow B(y_1 \epsilon) \notin A^{c} \Rightarrow y \notin A^{c}$ (ii) $B(y_1 \epsilon) \leq A \Rightarrow B(y_1 \epsilon) \notin A^{c} \Rightarrow B(y_1 \epsilon) \cap A^{c} = \phi \Rightarrow y \notin \partial A$ And therefore $A^{0} \cap \partial A = \phi = A^{0} \cap A^{e}$ 2) Suppose $y \epsilon \partial A$. Then by definition of boundary, $\forall \epsilon > 0$, $B(y_1 \epsilon) \cap A^{c} \neq \phi$ and $B(y_1 \epsilon) \cap A^{c} \neq \phi$ Thus \$ E>O such that

 $B(y_1\varepsilon) \leq A \implies y \notin A^\circ \text{ or } B(y_1\varepsilon) \leq A^{\varepsilon} \implies y \notin A^{\varepsilon}$

if $B(y_1 \epsilon) \leq A$ then $B(y_1 \epsilon) \cap A^{\leq} \phi_{\#}$ if $B(y_1 \epsilon) \leq A^{c}$ then $B(y_1 \epsilon) \cap A = \phi_{\#}$ Therefore $\partial A \cap A^e = \phi = \partial A \cap A^o$ 3) Suppose yEA. Then by the definition of exterior point, $B(y, \varepsilon) \leq A^{c}$ (i) $B(y,\varepsilon) \leq A^{c} \Longrightarrow B(y,\varepsilon) \notin A^{c} \Rightarrow y \notin A^{\circ}$ (ii) $B(y_1 \epsilon) \leq A^c \implies B(y_1 \epsilon) \notin A^c \implies B(y_1 \epsilon) \cap A = \phi \implies y \notin \partial A$ And therefore $A^e \cap \partial A = \phi = A^e \cap A^o$ Further, since for any yeX, we can find $\varepsilon > 0$ such that 1) $B(y,\varepsilon) \leq A \implies y \in A^{\circ}$ 2) $B(y_1 \varepsilon) \in A^c \implies y \in A^c$ 3) $B(y, \epsilon) \notin A$ and $B(y, \epsilon) \notin A^{c} \Longrightarrow y \in \partial A$ We have that $y \in A^{\circ} \cup \partial A \cup A^{e} \Rightarrow X \subseteq A^{\circ} \cup \partial A \cup A^{e} \subseteq X$ (*1)

Furthermore

 $A^{\circ} \cup \partial A \cup A^{e} \leq X$

And therefore by principle of mutual containment (*1) and (*2) becomes

(*2)

$$A^{\circ} \cup \partial A \cup A^{e} = X$$

Hence we have that

Example Calculating Interior, Exterior and Boundary

Question Calculate A°, 2A and A^e where A is the set $A=(0,1]\subseteq \mathbb{R}$ with metric space (IR,d) d(x,y) = |x-y|<u>Solution</u>: Consider the following diagram of A 0 From the diagram above, we can deduce the following • The interior: A° = (0,1) • The exterior: $A^e = (-\infty, 0) \cup (1, \infty)$ The boundary: ∂A = {0, 1} <u>Claim</u> 1 $A^{o} = (0, 1)$ <u>**Proof</u>: Take any x \in (0,1). Then 0 < x < 1</u>**)1 Let $\varepsilon = x - 0$, $\varepsilon' = 1 - x$ and take $\varepsilon^* = \min\{\varepsilon', \varepsilon\}$ Consider the open ball B(y, E*/2) Consider the point $y \in B(x, \varepsilon^*/2)$, then we get $y \in B(x, \varepsilon^{*/2}) \Longrightarrow |y-x| < \varepsilon^{*}$ $= \frac{-\varepsilon^*}{2} < y - x < \frac{\varepsilon^*}{2}$ $\implies x - \underline{\varepsilon}^* < y < x + \underline{\varepsilon}^*$ (*1)

Now since $\varepsilon = \infty - 0$ and $\varepsilon^* = \min\{\varepsilon, \varepsilon'\} \implies \varepsilon^* \leq \varepsilon$	
$x - 0 = \varepsilon \longrightarrow x - \varepsilon = 0$	
$\Rightarrow \gamma_{-\xi} > 0 \qquad \text{since } \xi^* \leq \xi$	
$\Rightarrow x \cdot \underline{\varepsilon}^* \ge 0$	
Similarly, since $\varepsilon = 1 - x$ and $\varepsilon^* = min(\varepsilon, \varepsilon) = 2 \varepsilon \varepsilon$,	
$s' = 1 - x \implies 1 = s' + x$	
$\implies 1 \ge \varepsilon^* + x$	
And combining the percults with (*1) we get	
$0 \le x - \underline{z^*} < y < x + \underline{z^*} \le 1$	
and therefore all points us $B(x \in \mathbb{R}/2)$ is an element of A is	
and moreture all points ge of a, e is an crement of it, i.e.	
$\beta(x, \varepsilon^*/2) \subseteq A$	
Dince by the definition, of an interior point, the definition implies	the interior points
points <u>MUSI</u> belong to the set. Since points set and set lie	outside the set, they

Further $1 \in A$ is not an interior point as for any $\epsilon > 0$ and open ball $B(1, \epsilon)$. This contains a point

$$y \in B(1, \varepsilon) \implies y > 1$$
$$\implies y \notin A$$
$$\implies B(1, \varepsilon) \notin$$

Hence 1 is not an interior point, and therefore

$$A^{\circ} = (0, 1)$$

A

<u>Claim 2</u>

$$\partial A = \{0, 1\}$$

Proof: First show that

and that no other point can be in
$$\partial A \Longrightarrow \partial A = \{0, 1\}$$

Showing for $0 \in \partial A$ (similar for 1), consider open, ball $B(0, \varepsilon)$

$$B(0_1 \epsilon) = (-\epsilon_1 \epsilon), \epsilon > 0$$

Clearly since $(-\varepsilon,\varepsilon) \cap A \neq \phi$ and $(-\varepsilon,\varepsilon) \cap A^{C} \neq \phi \Longrightarrow 0$ is a boundary point $\Rightarrow 0 \in \partial A$

Now we must show there are no other boundary points. By the disjoint union property,

Therefore no point in A° is a boundary point $\Longrightarrow (0,1) \notin \partial A$

Now consider the point y>1. Then $\exists \epsilon > 0$ such that $y=1+\epsilon$. And then take the open ball "say" B(y, $\epsilon/10$)

Since $\epsilon/10 < \epsilon$, the open ball B(y, $\epsilon/10$) will not intersect A since it is more than $\epsilon/10$ away from 1. Therefore

$$B(y_1 \varepsilon / i_0) \subseteq A^c \implies B(y_1 \varepsilon) \cap A = \emptyset$$

Similar argument for y<0

<u>Claim 3</u>

$$A^{e}$$
= (- ∞ , 0) U (1, ∞)

Proof: By the disjoint union property

$$\partial A \cup A^{\circ} \cup A^{e} = X$$
$$\partial A \cap A^{\circ} \neq \phi$$
$$A^{\circ} \cap A^{e} \neq \phi$$
$$\partial A \cap A^{e} \neq \phi$$

Then

 $A^{e} = \mathbb{R} \setminus (A^{\circ} \cup \partial A) = A^{e} = (-\infty, 0) \cup (1, \infty)$

					Op	en a	nac	lose	as	ets						
Supp	०ऽ९	(X, J)	() is	a	metric	space	and	A≤X								
			,	<u> </u>												
Det	יתידו	on ()pen (Sets												
A	subs	et A	l of	Xis	5 Open	îf	and or	nly if								
						Aſ	1	φ								
Def	nitic	n (losed	Sets												
							1 1									
A	sub.	set i	4 S X	is	closed	it ar	id only	j ĭ+								
						ə٨	≤A									
		nto.	Open	.	ل آمام	the opp		L clos								
			open	12		ne opp		η cius								
			1													
Det	initio	n , (lopen	sets												
A	set	that	t is	both	open	AND	closed	is co	lled a	i clope	n set					
Droi	norti	ios r	of On	on a	and Cl	ased	Sote									
						UJCU	JEIJ									
The	orem	∂A∶	= 94°													
.S.		(x	<u>م)</u> ژ	< n	mothic	(00()	and	Δ<	(Th	on						
	rppose		w/ 12) (A		opuer		//=/	`.	~						
					94	A = 9A	2									
Phon	f : 1	3u +	he de	finit	ion o-	f an	hounda		l u	∠ ∂ A 1	f and		t A ou	0en	halle	B
<u> </u>	ntered	⁰ at	<u>я</u> ,	.1.1.1.1			UUUUUU	'O Poir	", ()			Ű		<i>/e/</i>	UUIN	
			V	2		1C 1 A		ol		AC I d						
				יס	(812)/1	Α ŦΨ	ana	b(y	, E) (1 /	47Ψ			(1)			
By	y the	defi	nition	of	Compl	ement	of a	set								
(J				•	(1 < 1 <	- /									
						(A) -	- 7									
A	nd tl	neref	rie fo	s any	n open	balls	cent	ered a	ŧу,	(1) be	comes					
				($\int \int $	، ۱۲-۲۲		l n/.		(۷ د / ۲	4					
				B	(၂, ٤) / 1	ΑŦΨ	and		,2) ()	(A) 7	φ					
a	nd t	his i	s the	defi	nition	of bou	indas,y	of A	^c : ∂A	c						
	r	A ()			· · ·			7 1 6	. 1	·						
(h	veretor	e AL	- poin	its in	d A a	se poin	its in	JA 0	nd v	ice - vesc	a and	hence				
					9 A = 9.	A ^c										

Theorem A is open if and only if A^c is closed
Let
$$(X, A)$$
 be a metric space and let $A \leq X$ be a open set. Then
A is open $\iff A^c$ is closed
Proof:
(\Rightarrow): Lets assume that $A \leq X$ is open. Then $A = \phi$ on $A = \phi$
1) CASE 1: $A = \phi$
If $A = \phi$, then by definition of complement of of a set,
 $A^c = X$
Since X is clopen $\Rightarrow X$ is closed
2) CASE 2: $A \neq \phi$
If $A \neq \phi$, then by definition,
 $\partial A \cap A = \phi \Rightarrow \partial A \leq A^c$
Note $\partial A = \partial A^c$
Therefore
 $\partial A \leq A^c \Rightarrow \partial A^c \leq A^c$
which by the definition of closed: A^c is closed
 $\partial A^c \leq A^c \Rightarrow \partial A^c \cap A = \phi$
Note $\partial A = \partial A^c$
Therefore
 $\partial A^c \leq A^c \Rightarrow \partial A^c \cap A = \phi$
A is open \Rightarrow no boundary points
 $\Rightarrow \exists \epsilon > 0$ s.t. $B(x_1\epsilon) \leq A$ or $B(x_1\epsilon) \leq A^c$
 $\Rightarrow X$ is an interior OR x is an exterior

Theorem X and
$$\emptyset$$
 are clopen
Let (X, d) be a metric space. Then,
 \emptyset and X are clopen sets
Proof:
Claim 1
 \emptyset is clopen
Proof:
Claim 1
 \emptyset is clopen
Proof:
And therefore by definition of open sets
 $\emptyset \cap \partial \emptyset = \emptyset \cap \emptyset = \emptyset$
which shows \emptyset is open.
Further by the definition of closed sets,
 $\partial \emptyset = \emptyset = \emptyset = \emptyset$ (since the empty set is the subset of)
And therefore \emptyset is closed.
Claim 2
Claim 2
Claim 2
 X is clopen
Proof:
The boundary of the whole space X is empty, i.e.
 $\partial X = \emptyset$
and hence we can deduce that
 $\partial X \cap X = \emptyset \cap X = \emptyset$
which shows X is open.
Further, by definition, of closed sets
 $\partial X = \emptyset \leq X$ (since \emptyset is the subset of ALL sets)
and therefore \emptyset definition of closed sets
 $\partial X = \emptyset \leq X$ (since \emptyset is the subset of ALL sets)
and therefore closed.

Examples : Examples of open and closed sets

Here

 λ

- The set (0,1) is open
- · The set [0,1] is closed
- · The set (0,1] <u>neither</u> open <u>nor</u> closed

2) Consider the set

 $A = (0, 1) \cup (1, 2)$

The boundary $\partial A = \{0, 1, 2\}$. Further

$$\partial A \cap A = \phi \implies A$$
 is open

Open and Closed Sets on Subspaces

(A, d)

On subspaces, we need to be careful.

Let
$$(X, d)$$
 be a metric space and $A \subseteq X$ be a subspace

Note Since A is a subspace, it cannot see what points lie outside A

Therefore it can only see points that lie in A, i.e.

$A^c = \phi$

Example: Open and Closed on subspaces.

1) Consider the metric space (R,d) and consider the subspace

 $A = (0, 1) \cup (1, 2) \subseteq \mathbb{R}$

 $(A,d|_{A})$

where

i) The boundary of A are:
$$\partial A = \phi$$
 as 1,2,0 \$\overline{A}\$ and subspace cannot see $\mathbb{R} \Rightarrow$

 \Rightarrow therefore $B(x,r) \cap A^{c} = \emptyset$

∂A='ø

ii) Here, the interior is the entire set, i.e.

A°= A

 $A^e = \phi$

iii) Since the subspace cannot see beyond A, there are NO exterior points,

2) Now consider the subset

 $(0,1) \leq (0,1) \cup (1,2)$

The subset is only contained in $A = (0, 1) \cup (1, 2)$, not in R since A is a subspace.

Open Sets using Interior Points (equivalent defn)

Let (X,d) be a metric space and A < X. If A is open, then every point of A is an interior point.

Theorem Open sets using Interior points

Let (X,d) be a metric space and A EX. Then,

A is open $\iff \forall x \in A, \exists \varepsilon = \varepsilon(x)$ such that $B(x, \varepsilon) \subseteq A$

<u>Proof</u>: $A = \phi$ or $A \neq \phi$

(⇒):

1) CASE 1: A=Ø

Since the empty set ϕ is clopen $\Rightarrow \phi$ is open

2) CASE 2: $A \neq \phi$

Since A is open, it will have no boundary point, and therefore it will satisfy the contrapositive (negation) of the definition of boundary

 $\exists \epsilon > 0$ such that $B(x, \epsilon) \subseteq A$ OR $B(x, \epsilon) \subseteq A^c$ $\forall x \in A$

Since $x \in A$, $B(x, \varepsilon) \notin A^{c}$ otherwise $x \in A^{c}$ which is a contradiction. Thus by elimination

(*)

 $B(x, \varepsilon) \leq A$

 (\Leftarrow) : Assume that $\forall x \in A, \exists \epsilon = \epsilon(x) > 0$ such that

 $B(x, \epsilon) \leq A$

As a consequence

x∉∂A

 $B(y,\varepsilon^*) \leq B(x,\varepsilon)$

Let
$$y \in \{x_0\}^c$$
.
 $y \neq x_0 \implies d(x_0, y) = \varepsilon > 0$ for some $\varepsilon > 0$
Then, we have that
 $B(y_1 \varepsilon/2) \subseteq \{x_0\}^c \implies \{x_0\}^c$ is open.
 $\Rightarrow \{x_0\}$ is closed A^copen \Longrightarrow A closed

Singletons are always closed

Singletons in discrete metric space: do Consider discrete metric space (X, do)

$$d_0(x,y) = \begin{cases} 0 & x=y \\ 1 & x \neq y \end{cases}$$

Now all open balls in (X, do) are of form

$$B(x_{0}, \varepsilon) = \{y \in X : d(x_{0}, y) < \varepsilon\} = \begin{cases} \{x_{0}\} & 0 < \varepsilon \leq 1 \\ X & \varepsilon > 1 \end{cases}$$

so for $\epsilon \leq 1$, $B(x_0, \epsilon) = \{x_0\}$ and open ball is an open set $\implies \{x_0\}$ is open in discrete metric

⇒ singletons open in discrete metric space

As shown above, singletons are closed

Therefore for discrete metric space, singletons are clopen

Topology on Metric Spaces

							•															
Defin	itio	n	Topo	logy	01	(X,	d)															
		V		VV	v																	
The	e to	pol	09.4	of	an	netri	ic s	pace	(X	(,d)	is	the	coll	ection	of	all	ope	1 50	abset	5 0-	- X	
			Ŵ									_					-					
						T ₁	ר} =	26)	X : 1	2 is	s oper	l										
						a																
These	fore																					
				S	ETa	\Leftrightarrow	Ω	เร	opey	,												
Prop	ert	ies	of	Тор	olog	y																
								-														
Prope	sty	T1	.: (lose	d ur	nder	Arb	itra	ry l	lnio	ns											
	V				•				V	-	•											
Theory	em	Clo	sed	Un	der 1	1xbir	trary	, U	nion	S												
	•						U															
Tak	ke l	iny	col	ectio	on o	f o	pen	sets	so	Ŋ												
		V								V												
							Λs	- ld														
																	_					
The	n 1	he	uni	on	of o	pen .	sets	is	open	,							_					
						•			-								_					
i.e.	. ∀	Λ	$\leq T_{c}$	L,					-	1												
							ک (26	12	(i	t is (open										
						J	εΛ					-										
•	•																					
<u> Proo-</u>		Tak	ie (any													_					
				V													_					
					xε	U	J								_		_					
						∩€L											_					
_																	_					
The	en			-		\sim					2			1					_		_	
				с Е	: E []	(x)	P	NU	<u>ل</u> (ቢ	is an	, op	en se	et 👘					_			
<u> </u>			<u>_</u>						•			-			_							
And	(+	nere	tore	by	the	defi	itio	n o	+ 0	pen					_							
				7	./ \				1	0	()	<u> </u>	0		_				_			
				1	E(X)	>0	su	ch -	that	В	(X,E/	<u>۲</u> .	12		_							
	1 1			-											_				_			
ano	a h	ence	we	ha	ve										_							
					pl.		\sim		۸ ۸ ۱۰				~		_							
					DC	r, E)	=12			/	775	U -	۷ ٦۲		_							
				_								775.	5 Ju		_				_			
11		-		0 01	r	1	. 1.								_							
[he	1 b	1 1	ansi	יזיייי (j 0t	sul	osets,								_				_			
		-				0	(~ c)		1						_				_			
						Ď	ເມັງວັ	/ 느	Ų,	77					_							
									n <i>el</i>]	-					_				_			

and therefore by definition, open.

Property T2: Closed under Finite Collections of Open Sets

 Theosem Closed Under Finite Intersections

 Take any finite collection of Open sets

$$\Omega_1, ..., \Omega_N$$

 Then

 $\bigcap_{i=1}^{N} \Omega_i^i$ is open ($\in T_d$)

 Proof:
 $\bigcap_{i=1}^{N} \Omega_i^i = \emptyset$ then as \emptyset is open $\Rightarrow \emptyset \in T_d$

 2) CASE 1:
 If

 $\bigcap_{i=1}^{N} \Omega_i \neq \emptyset$ then take any

 $x \in \bigcap_{i=1}^{N} \Omega_i^i$
 J is open,

 $x \in \bigcap_{i=1}^{N} \Omega_i^i$
 $X \in \bigcap_{i=1}^{N} \Omega_i^i$

Note X, Ø E Td

Remark The intersection of infinite number of open sets need not be open. To see a counterexample, let

$$B_n = B(0, \frac{1}{n}) \subseteq \mathbb{R}^{-}, 1, 2, ...$$

where B_n is an open ball in the complex plane and open ball is an open set in \mathbb{R}^2 However $\bigcap_{n=1}^{\infty} B_n = \{0\}$

which is not open since \overline{A} no open ball in the complex plane with center 0 that is contained in 0

Open set is a Union of Open Balls

Theorem Open set is the union of open balls.

$$A = \bigcup_{x \in A} B(x, \varepsilon)$$

Proof: Take any xEA and therefore

$$\forall x \in A \exists z \in z(x) \text{ such that } B(x, z) \subseteq A$$

Now since $x \in B(x, \varepsilon(x))$ and therefore if we go through all points $x \in A$, $A \subseteq \bigcup B(x, \varepsilon(x))$ (*1)

Further, we can see that since
$$B(x, \varepsilon(x)) \subseteq A$$
 for any x

хеА

xeA

$$B(x, \varepsilon(x)) \leq A$$

Therefore by combining (*1) and (*2) and using mutual containment

$A = \bigcup_{x \in A} B(x, \varepsilon)$

Theorem Let (X,d) be a metric space and
$$A \subseteq X$$
. Then
i) A° is an open subset of A that contains every open subset of A
ii) A is open $\iff A = A^{\circ}$

i) Let
$$x \in A^\circ$$
. By definition of interior point
 $\exists \epsilon > 0$ such that $B(x, \epsilon) \leq A$
But $B(x, \epsilon)$ is an open set and therefore
 $\forall y \in B(x, \epsilon) \exists \epsilon^* > 0$ such that $B(y, \epsilon^*) \leq B(x, \epsilon) \leq A$

Therefore all points of $B(x, \varepsilon)$ is an interior point of A therefore

$$B(x, \varepsilon) \subseteq A^{\circ}$$

Thus x is a center of an open ball contained in A° and this is kue for any xEA°. Therefore A° is open.

We need to show A° contains all open subsets $G \subseteq A$. To show this Let $x \in G$.

 $\Rightarrow x \epsilon A^{\circ}$

Therefore we have $x \in G \Rightarrow x \in A^\circ$

ii) A is open then $A \subseteq A^\circ$. We also have by define $A^\circ \subseteq A$. Hence $A = A^\circ$

Collection of Closed Sets

Let's see what happens to the properties of Topology of metric spaces when we replace open sets with closed sets

Definition Collections of Closed Sets Fe

Take an anbitrary collection of closed sets of X and let it be denoted by

$$\mathcal{F} = \{ F \leq X : F \text{ is closed} \}$$

Properties of Fe

Property F1: Closed under Arbitrary Intersections

Theorem Closed under Arbitrary Intersections

Take any collection of closed sets

The intersection of closed sets is closed

i.e. $\forall \Lambda \leq J_e$

(F ∈ Je (it is closed)

Closure of a Set

But we also need to stay away from
$$\partial A$$

Suppose
 $\exists y \in B(x, \varepsilon)$ such that $y \in \partial A$ (leads to a contradiction)
Then $y \in \partial A$ and by definition of boundary,
 $B(y, \delta) \cap A \neq \phi$ and $B(y, \delta) \cap A^{C} \neq \phi$
Consider the following diagnam:
Let $d(x, y) = \varepsilon^{x} < \varepsilon$
Consider the open ball $B(y, \varepsilon^{1/2})$ and define
 $\varepsilon = \min_{\varepsilon} \{\varepsilon^{x}, \varepsilon - \varepsilon^{x}\}$
Thus we get $B(y, \varepsilon) \leq B(x, \varepsilon)$ and $B(x, \varepsilon) \leq A^{C} \Rightarrow B(y, \varepsilon) \leq A^{C}$ (*) $\Rightarrow B(y, \varepsilon) \cap A = \phi$
But we have that $B(y, \varepsilon) \cap A \neq \phi$ and this contradicts (*) (defn of boundary)
 $\therefore y \notin \partial A$

Example of Closure of an Open Ball Consider metric space (\mathbb{R}^{2}, d_{2}) where $d_{2}(x,y) = \int_{i=1}^{2} |x_{i}-y_{i}|$ Showing that in (\mathbb{R}^{2}, d_{2}) , $\overline{B(x, r)} = \overline{B}(x, h)$ U $B(x, h) = \{y \in \mathbb{R}^{2} : d_{2}(x, y) < h\}$ is a boundary point. Indeed they are all interiors point $(\operatorname{Recall} \partial A, A^{\circ} and A^{\circ} are pairwise disjoint)$ Therefore it is sufficient to show that

$$\partial B(x,h) = \{y \in \mathbb{R}^n : d_2(x,y) = h\} \subseteq \overline{B}(x,h)$$

Define B(x,h) := C

Since all points in B(x, A) is an interior point, any $y \in \mathbb{R}^2$ for which $d_2(x, y) > A$ is an exterior of B(x, A)

We know that any
$$\underline{r} \in Ly$$
 can be written in the form

$$\Upsilon(\lambda) = \underline{x} + \lambda(\underline{y} - \underline{x}) \qquad \lambda \in \mathbb{R}$$

i) If $-1 < \lambda < 1$, then $h \in B(x,h)$

ii) If $\lambda \notin (-1, 1)$ then $h \notin B(x, h)$

iii) If $\lambda = 1$ then $\Upsilon(1) = \chi + 1(\eta - \chi) = \eta$

Let $\varepsilon > 0$ be given. Choose $\delta := \min \left\{ \frac{\varepsilon}{2}, \frac{\gamma}{2} \right\}$. Then

$$\underline{\Upsilon}(\delta) = \underline{x} + \delta(\underline{y} - \underline{x}) \in B(\underline{x}, h)$$
$$\underline{\Upsilon}(1+\delta) = \underline{\chi} + (1+\delta)(\underline{y} - \underline{x}) \in B(\underline{x}, h)^{c}$$

From this, we can deduce that

8

 $B(y,\delta) \cap B(x,r) \neq \phi \quad \text{Definition of boundary}$ $B(y,\delta) \cap B(x,h) \neq \phi \quad \text{Definition of boundary}$

4

A094

Note that $\overline{B}(x, h) = B(x, h) \cup C$

Note This is not true in general. ∃ (X,d) such that B(x,r) ≠ B(x,r)

Theorem

Let (X,d) be a metaic space and $A \subseteq X$.

A is closed
$$\iff A = \overline{A}$$

Proof:i) Suppose
$$\overline{A} = A$$
.i) Suppose $\overline{A} = A$.closuhe \overline{A} is closed \Rightarrow A is closed \overline{A} is closed \Rightarrow $\overline{A} = A =$

Limit Points of a Set

Motivation: We want to form an "efficient" clasing of a set. That is we want

Suppose
$$A \subseteq F \subseteq \overline{A}$$
 and F is closed \Longrightarrow $F = \overline{A}$

That is A is the smallest closed superset of A

Definition Limit Point

Let (X,d) be a metric space and $F \subseteq X$. A point $x \in X$ is called a limit point of F if each open ball with center x contains at least one point of F different from x, i.e.

$$B(x, \varepsilon) \setminus \{x\} \cap F \neq \phi$$
 for any $\varepsilon > 0$

The derived set of A denoted by A' is the set of ALL limit points of A

Proposition

Let
$$(X, d)$$
 be a metric space and $F \subseteq X$. If x_0 is a limit point of F, then
every open ball $B(x_0, r)$ contains an infinite number of points of F

Proof: (via contradiction) 3 B(xo,r) NF has infinite points

Suppose that the ball

contains a finite number of points of F. Therefore consider the following set of points:

$$y_1, \dots, y_N \in B(x_0, r) \cap F$$
 $y_i \neq x_0$

and define
$$\delta = \min \{ d(y_1, x_0), d(y_2, x_0), \ldots, d(y_N, x_0) \}$$

0000111

Proposition

Let (X,d) be a metaic space and $F \subseteq X$.

 x_0 is a limit point of $F \iff \exists$ a sequence $(x_n) \in F^N$ of distinct points such that lim d(xn,xo)=0

Proof:

(*): Suppose
$$\exists (x_n) \in F^{N}$$
 such that $\lim_{n \to \infty} (x_n, x_0) = 0$
Then every open ball $B(x_0, \Lambda)$ contains $(x_n)_{n \geq N_0}$ for a suitable choice of No.
Observe that ?) Finitely many points do not affect limit
ii) Points $x_1, x_2, ..., x_n, \in F \Longrightarrow B(x_0, r)$ contains a point of F different
trom x_0
 $\Rightarrow x_0$ is a limit point of F.
Choose a point $x_1 \in F$ such that
 $x_1 \in B(x_0, 1)$ and $x_1 \neq x_0$
Further, choose a point $x_2 \in F$ such that
 $x_2 \in B(x_0, 1/2)$ and $x_2 \neq x_2 \pm x_0$
Continuing this process in which the nth step of the process is a point $x_n \in F$ such that
 $x_n \in B(x_0, 1/2)$ and $x_n \neq x_0 \neq x_1 \dots \neq x_{n-1}$
And in the limit $n \to \infty$, we have a sequence (x_n) of distinct points of F such that
 $\lim_{n \to \infty} (x_n, x_0) = 0$
 $\lim_{n \to \infty} y \in F$ (x_0, t) hat $\lim_{n \to \infty} (y \in F = x_0)$ is a limit point
 $y \in F' \Leftrightarrow y$ is a limit point
 $\bigoplus T y \in F$ such that $y \in F(x_0, x_0) = 0$
 $\lim_{n \to \infty} y \in F$ such that $\lim_{n \to \infty} (y \in F = x_0)$ for $y \in F(x_0, x_0) = 0$
 $\lim_{n \to \infty} y \in F = x_0$ is a limit point $\lim_{n \to \infty} y \in F(x_0, x_0) = 0$
 $\lim_{n \to \infty} y \in F = x_0$ is a limit point $\lim_{n \to \infty} y \in F(x_0, x_0) = 0$
 $\lim_{n \to \infty} y \in F = x_0$ is a limit point $\lim_{n \to \infty} y \in F(x_0, x_0) = 0$
 $\lim_{n \to \infty} y \in F(x_0, x_0) = 0$

$$\Rightarrow \exists y' \in F \text{ such that } y' \neq y \text{ and } y' \in B(y_1 \in)$$
$$\Rightarrow B(y_1 \in) \cap F \neq \phi$$

Equivalent definition for closed

Theorem Closed
Let
$$(X,d)$$
 be a metric space and $F \subseteq X$.
If $F' \subseteq F(F$ contains all its limit points) \Rightarrow F is closed.
Proof: (using contradiction)
Suppose F is closed and $\exists y$ such that $y \in F'$ and $y \notin F$
Let $\varepsilon > 0$ be given and consider open ball $B(y_1 \varepsilon)$
i) $\exists y' \in F$ such that $y' \neq y$ and $y \in B(y_1 \varepsilon)$ (since y is a limit point)
 $\Rightarrow B(y_1 \varepsilon) \cap F \neq \phi$
ii) $B(y_1 \varepsilon) \Rightarrow y$ and $y \notin F \Rightarrow B(y_1 \varepsilon) \cap F^{c} \neq \phi$
From (i) and (ii), y is a boundary point of $F \Rightarrow y \in \partial F$ and $\partial F \subseteq F$ (F is closed)
 $\Rightarrow y \in F$
This is a contradiction. \mathcal{M}
Closure using Limit Points

We can also form a closure by adding all the limit points

Fact A=AUA

Showing that this is equivalent to the first form of closure, (A=AUDA)

i) If A is closed
$$\Rightarrow \overline{A} = A$$
 and $A' \subseteq A \Rightarrow A' \subseteq \overline{A} \Rightarrow \overline{A} = A \cup A'$

ii) If A is not closed, we know that

Ā=AUƏA

If $A' \neq \phi$ then $A' \subseteq \overline{A}$ (empty set is the subset of all sets)

Therefore assume that $A' \neq \phi$ and further assume that $y \in A'$ and $y \notin A$

Since $y \notin A \Rightarrow y \in \partial A$. By define of boundary $\forall \epsilon > 0, B(y_1\epsilon) \cap A \neq \emptyset$ and because $y \notin A \Rightarrow \exists y' \neq y$ site $y' \in B(y_1\epsilon) \cap A$

Therefore we have that
$$y \in \overline{A}$$
 and $y \notin A \Rightarrow y \in \partial A$
 $\Rightarrow y \in A'$
and thus $A' \leq \overline{A}$
Since $A \leq \overline{A}$ and $A' \leq \overline{A} \Rightarrow \overline{A' \cup A} \leq \overline{A}$
Now showing that $\overline{A} \leq A \cup A'$: As A is not closed, $\exists y \in A'$ such that $y \notin A$ (if A is closed
 $A' \leq A$)
Let $\varepsilon > 0$ be given. Then
i) y is a limit point, $\exists y \notin y \in A$ s.t $y' \in B(y, \varepsilon) \Rightarrow B(y, \varepsilon) \cap A \notin \phi$
ii) $y \notin A \Rightarrow y \in A^{c} \Rightarrow B(y, \varepsilon) \cap A^{c} \neq \phi$
Therefore by (i) and (ii) \Rightarrow y is a boundary point.
Hence we have that $y \in A \cup A'$ and $y \notin A \Rightarrow y \in A'$
 \Rightarrow y is a boundary.
Thus $\partial A \leq A \cup A'$
Since $A \leq A \cup A'$ and $\partial A \leq A \cup A'$
 $A \leq A \cup A'$
Therefore by (*) and (*2) and by principle of mutual containment
 $\overline{A} = A \cup A'$

Remark In the proof above, we used the following equivalence

$$A \subseteq BUC \iff A \cap B^{C} \subseteq C$$

This follows from the logical equivalence of

Note It is not the case

They could be different

Topological version of closure
Theorem Topological version of closure
Let (X, d) be a metric space and A
$$\leq$$
 X. Then
 $\overline{A} = \bigcap_{Y} F$
where \overline{Y} is the collection of all closed supersets of A
Showing that $A \leq F \leq \overline{A}$ and F is closed $\Rightarrow F = \overline{A}$
Proof: Let $A \leq X$
If $A \leq F \leq \overline{A}$ where F is closed, then F contains all its limit point but not all of A's limit
points.
Suppose that $y \in A'$ and $y \notin F$
By defn of limit point, for any $\varepsilon > 0$, $B(y,\varepsilon) \land A \neq \emptyset$ and contains $xc \neq y$.
 $a \leq F \leq \overline{A}$
But $x \in A \leq F \Rightarrow x \in F$ and y is a limit point of Λ
 $\Rightarrow y \in F'$.
But F is closed \Rightarrow F is closed
 $\Rightarrow F' \leq F$
 \Rightarrow $y \in F$

4

Derived set is closed

Proposition The devived set is closed
Let
$$(X,d)$$
 be a metric space. Then F' is closed, i.e.
 $(F')' \subseteq F'$
Proof: Either $(F')' = \emptyset$ or $(F')' \neq \emptyset$
1) CASE 1: $(F')' = \emptyset$ and $\emptyset \subseteq F' \Longrightarrow (F')' \subseteq F$
2) CASE 2: $(F')' \neq \emptyset$
Suppose $x_0 \in (F')'$ and consider open, ball $B(x_0, r)$

By definition of limit point,

$$\exists y \neq x_0$$
 and $y \in F'$ s.t $y \in B(x_0, r)$
Define $r' = r - d(x_0, y) \implies r' < r$.
 $y \in F' \implies y$ is a limit point
 $\Rightarrow B(y, r')$ contains an infinite number of points of F
But $B(y, r') \leq B(x_0, r)$ (look at proof of open ball is an open set)
 $\Rightarrow B(x_0, r)$ contain infinitely many points
 $\Rightarrow x_0$ is a limit point
 $\Rightarrow x_0 \in F'$
Therefore we have shown that

$$(F')' \leq F' \implies$$
 set of all limit points is closed.

Properties of Derived Set

Theorem Properties of Derived sets
Let
$$(X,d)$$
 be a metric space and $F_1 \subseteq X$ and $F_2 \subseteq X$. Then
i) $F_1 \subseteq F_2 \implies F_1' \subseteq F_2'$
ii) $(F_1 \cup F_2)' = F_1' \cup F_2'$
iii) $(F_1 \cap F_2)' \subseteq F_1' \cap F_2'$

i) Suppose
$$x \in F_1 \implies x$$
 is a limit point of F_1

$$\Rightarrow \exists y \neq x \in F_1 \quad s \cdot t \quad y \in B(x, \varepsilon)$$

Now, since, $F_1 \leq F_2 \Rightarrow y \in F_2$

$$\Rightarrow$$
 y is a limit point of F_2

Therefore $F_1 \leq F_2'$

17)
$$F_{1} \leq F_{1} \cup F_{2} \implies F_{1}' \leq (F_{1} \cup F_{2}')$$
 from (1) (1)
 $F_{2} \leq F_{1} \cup F_{2} \implies F_{2}' \leq (F_{1} \cup F_{2}')$ from (1) (1)
Therefore by (1) and (12),
 $F_{1}' \cup F_{2}' \leq (F_{1} \cup F_{2}')$ (1)
Now suppose $x_{b} \in (F_{3} \cup F_{2}')$.
Then \exists a sequence $(x_{n})_{n=1}^{\infty}$ of distinct points in $F_{3} \cup F_{2}$ s.t.
 $d(x_{n}, x_{0}) \rightarrow 0$ as $n \rightarrow \infty$
Since (x_{n}) is an infinite sequence, one of F_{1} or F_{2} contains an infinite
number of points of x_{0} (subsequence, all distinct)
a) if F_{1} contains an infinite number of points of x_{n} , then
 $x_{0} \in F_{1}'$ and $F_{1}' \leq F_{1}' \cup F_{2}' \implies x_{0} \in F_{1}' \cup F_{2}'$
subsequence
converges to same limit
b) if F_{2} contains an infinite number of points of x_{n} , then
 $x_{0} \in F_{2}'$ and $F_{2}' \leq F_{1}' \cup F_{2}' \implies x_{0} \in F_{1}' \cup F_{2}'$
Subsequence
converges to same limit
Therefore from a) and b),
 $(F_{1} \cup F_{2})' \leq F_{1}' \cup F_{2}'$ (42)
From (41) and (41), and principle of mutual containment,
 $(F_{1} \cup F_{2})' = F_{1}' \cup F_{2}'$
iii) Similar to first part of (ii)

Theorem: Equivalence of Closure Let (X,d) be a metric space, FSX. Then the following statements are equivalent i) XEF ii) $B(x,\varepsilon) \cap F \neq \emptyset$ for every open ball centered at x (111) I an infinite sequence (xn) of points (not necessarily distinct) of F such that $\alpha_n \rightarrow \alpha$ as $n \rightarrow ao$ (lim $d(\alpha, \alpha_n) = 0$) Note that A≤Ā and B≤B ⇒ AUB≤ AUB But closure is the smallest closed set ⇒ AUB ⊆ AUB Theorem: Subset of Closure. Suppose (X,d) is a metric space and $A,B \subseteq X$. $A \leq B \implies \overline{A} \leq \overline{B}$ Proof: Suppose xEA $\chi \in \overline{A} \implies \chi \in A \text{ or } \chi \in A'$ (1) xEA \Longrightarrow XEB (hypothesis) B≤B $\Rightarrow x \in \widehat{B}$ x∈A ⇒ x is a limit point (2) \Rightarrow $\exists y \neq x s \cdot t y \in A and y \in B(x, \epsilon)$ \Rightarrow $\exists y \neq x$ s.t yeb and yeb(x, e) $\Rightarrow B(x, \varepsilon) \setminus \{x\} \cap B \neq \emptyset$ ⇒ y∈B

Properties of Interior, Exterior and Boundary

The following are properties of interior, exterior and boundary: Theorem, A^e is open. Let (X,d) be a metric space and let $A \subseteq X$. Then, A^e is open. Proof: Any point yeX is an exterior point of A iff $\exists \epsilon > 0$ such that $B(y_1 \epsilon) \subseteq A^c$ 2 ^B complement 1) CASE 1: $A^{e} = \phi$, as ϕ is clopen $\Rightarrow \phi$ is open. {y'eX: d(y,y)<{}} 2) CASE 2: $A^e \neq \phi$. For any $x \in A^e$, by definition of exterior, $\exists \epsilon > 0$ such that $B(x_{1}\epsilon) \leq A^{C}$ Take $\varepsilon^* < \varepsilon$, $\forall y \in B(x, \varepsilon)$, $\exists \varepsilon^* s t B(y, \varepsilon^*) \subseteq B(x, \varepsilon) \subseteq A^C \quad * \quad (open, balls are open)$ Therefore all points of $B(x, \varepsilon)$ are exterior points by \star , hence $B(x, \varepsilon) \leq A^e$ This is the definition of open $\implies A^e$ is open. Theorem: 2A is closed. Let (X,d) be a metric space and A $\leq X$. Then *∂A* is closed Proof: Using the disjoint union property, Ҳ=Ѧ҄ӵѦ҄ҍ҅Ӹ҄҅ѲѦ A°1 2A=Ø Therefore we have that $A^{\circ} \cap A^{e} = \phi$ $\partial A = X \setminus (A^{\circ} \sqcup A^{e})$ $\partial A \cap A^e = \phi$ Further since A° and A^e are open, $A^{\circ} \sqcup A^{e} \in T_{d} \implies A^{e} \sqcup A^{\circ}$ is open. (union of open sets are open) But $\partial A = (A^{\circ} \sqcup A^{e})^{c} \implies \partial A$ is closed (A is closed ⇔ A^c is open).

Theorem
$$\partial(\partial A) \leq \partial A$$

Let (X, d) be a metric space and $A \leq X$. Then
 $\partial(\partial A) \leq \partial A$
Proof:
Since ∂A is closed,
 $\partial(\partial A) \leq \partial A$
Equivalent definition of Interior
Theorem $A^{\circ} = A \setminus \partial A$
Let (X, d) be a metric space and $A \leq X$. Then
 $A^{\circ} = A \setminus \partial A$
Let (X, d) be a metric space and $A \leq X$. Then
 $A^{\circ} = A \setminus \partial A$
Proof:
(i) showing that $A^{\circ} \leq A \setminus \partial A$
If $A^{\circ} \neq \phi$ then, $A^{\circ} \leq A$ is trivially true
If $A^{\circ} \neq \phi$ then, $A^{\circ} \leq A$. We know that $A^{\circ} \leq A$
We must show that no interior point is a boundary point.
 $x \in A^{\circ} \Rightarrow \exists z > 0$ such that $B(x, z) \leq A$. (defin of interiors point.)
if $x \in \partial A$, then $B(x, z) \cap A \neq \phi$ and $B(x, z) \cap A^{<} \neq \phi$
 $\cosh^{\circ} A \setminus \partial A \Rightarrow x \notin \partial A$
Therefore $x \in A^{\circ} \Rightarrow x \notin \partial A$
it) Showing that $A \setminus \partial A \leq A^{\circ}$
If $A \setminus \partial A = \phi$ then $A \setminus \partial A \leq A^{\circ}$
is trivially true
If $A \setminus \partial A = \phi$ then $A \setminus \partial A \leq A^{\circ}$
is trivially true
If $A \setminus \partial A \neq \phi$ then suppose $x \in A \setminus \partial A$
 $x \in A \setminus \partial A \Rightarrow x \in A \setminus \partial A$

And by negation of definition of boundary;

$$x \notin \partial A \Rightarrow B(x,z) \leq A$$
 on $B(x,z) \leq A^{c}$ and therefore
 $g(x,z) \leq A \Rightarrow x$ is an interior point
 $\Rightarrow x \in A^{0}$
Therefore by (1) and (11),
 $A^{0} = A \setminus \partial A$
Equivalent definition of Exterior
It can be shown that the exterior is the complement of closure
Let (X,d) be a metric space and $A \leq X$. Then
 $A^{e} = (\overline{A})^{c}$
Proof: First observe that
 $x \in (\overline{A})^{c} \Rightarrow x \notin A$ and $x \notin \partial A$
(1) Showing that $A^{e} \leq (\overline{A})^{c}$
 $x \in A^{e} \Rightarrow \exists z > 0$ st $B(x,z) \leq A^{c}$ (defn of interior)
if $x \in \partial A$ then, $B(x_{1} \in) \cap A \notin \phi \Rightarrow contradiction$
 $\Rightarrow x \notin \partial A$
Further $B(x_{2} \in) \leq A^{c} \Rightarrow x \in A^{c} \Rightarrow x \notin A$
(i) Showing that $(\overline{A})^{c} \leq A^{e}$
 $x \in (\overline{A})^{c}$
 $x \in (\overline{A})^{c} \Rightarrow x \notin A$ and $x \notin \partial A$
(i) Showing that $A^{e} \leq (\overline{A})^{c}$
 $x \in A^{e} \Rightarrow \exists z > 0$ st $B(x,z) \leq A^{c}$ (defn of interior)
if $x \in \partial A$ then, $B(x_{1} \in) \cap A \notin \phi \Rightarrow contradiction$
 $\Rightarrow x \# \partial A$
Further $B(x_{2} \in) \leq A^{c} \Rightarrow x \notin A^{c} \Rightarrow x \notin A$
 $B(x_{1} \in) \leq A$ and $x \notin \partial A$
where $x \in (\overline{A})^{c} \Rightarrow x \notin A$ and $x \notin \partial A$
 $A^{e} = (\overline{A})^{c}$
(ii) Showing that $(\overline{A})^{c} \leq A^{e}$
 $Suppose x \in (\overline{A})^{c} \Rightarrow x \notin A$ and $x \notin \partial A$
 $B(x_{1} \in) \leq A$ and $B(x_{2} \in) \leq A^{c}$.
But since $x \in A^{c}$ $B(x_{1} \in) \leq A^{c} \Rightarrow x \notin A^{e}$

Union of Boundary

Theorem Boundary of union is contained in union of boundary
Let (X,d) be a metric space and A, B
$$\leq X$$
. Then,
 $\partial(A \cup B) \subseteq \partial A \cup \partial B$
Proof:
Suppose $x \in \partial(A \cup B)$. By definition of boundary,
 $\forall e > 0$, $B(x, e) \cap (A \cup b) \neq \phi$ and $B(x, e) \cap (A \cup B)^{\dagger} \neq \phi$
By $De -Morgan's Law$, we get
 $B(x, e) \cap A) \cup (B(x, e) \cap B) \neq \phi$ and $B(x, e) \cap (A^{c} \cap B^{c}) \neq \phi$
 $\Rightarrow (B(x, e) \cap A) \cup (B(x, e) \cap B) \neq \phi$ and $B(x, e) \cap A^{c} \cap B^{c} \neq \phi$
 $(A \cup B \neq \phi \rightarrow A \neq \phi \Rightarrow B \neq \phi)$
 $\Rightarrow (B(x, e) \cap A) \cup (B(x, e) \cap B) \neq \phi$ and $B(x, e) \cap A^{c} \cap B^{c} \neq \phi$
 $\Rightarrow (B(x, e) \cap A) \cup (B(x, e) \cap B) \neq \phi$ and $B(x, e) \cap A^{c} \cap B^{c} \neq \phi$
 $\Rightarrow (B(x, e) \cap A) \neq \phi$ on $B(x, e) \cap B^{c} \neq \phi$ on $B(x, e) \cap B^{c} \neq \phi$ and $B(x, e) \cap A^{c} \cap B^{c} \neq \phi$
 $\Rightarrow B(x, e) \cap A \neq \phi$ and $B(x, e) \cap A^{c} \cap B^{c} \neq \phi$ on $B(x, e) \cap B^{c} \neq \phi$ and $B(x, e) \cap B^{c} \neq \phi$
 $\Rightarrow x \in \partial A \cup A \neq \phi$ and $B(x, e) \cap A \neq \phi$ then $B(x, e) \cap B^{c} \neq \phi$
 $\Rightarrow x \in \partial A \cup B$
Proof: We know that
 $A^{e} = A^{c} \setminus \partial A^{c}$
 $= (A \cup \partial A)^{c}$ ($De Morgan's | Iw)$
 $= A^{c} \cap (\partial A)^{c}$
 $= A^{c} \cap (\partial A^{c})^{c}$
 $\Rightarrow A^{e} = A^{c} (\partial A^{c})^{c}$

So	me	ot	ner	K	se-f	ful	p	rop	ert	ies	۵	re		
					•									
					91	A	= 0	ЯF	10	6)				_
					21	L (a(0	2)				
					QI	0.2	= (7(<i>F</i>	1 V [2]				
٨	to	°L	<u> </u>	cof	0	c.	cla	500						
		IT	u v			יכ		Seo	9					
						A	= /	1 =	\Rightarrow	2	A ^e	=	A	•
					l	~		•					- (
														-
														+
														+
														t
														t
														T
														1
												<u> </u>		
		_								-	-			
										-	-			
											-			
										-	-	-		-
		_								_				
										<u> </u>				
		_												
		_								<u> </u>	<u> </u>	<u> </u>		
		_								-	-	-		
										-				
		_									-			
			\vdash					-						

- Let (X,d) be metric spaces and $A \subseteq X$. A is said to be dense in $X \iff \overline{A} = X$
- That is for any $x \in X$ and any $\varepsilon > 0$, $\exists x \in A$ such that $d(x, x) < \varepsilon$

Topological Equivalence

Definition: Topological Equivalence Let (X,d) and (X,d*) be metric spaces. Then (X,d) and (X,d*) are equivalent if $T_d = T_{d*}$ That is if the metrics d and d* generate the same open sets Theorem: Let X be a set and d* and d be metrics on X such that $\exists \lambda > 0$ for which $\frac{1}{\lambda}d(x,y) \leq d^{*}(x,y) \leq \lambda d(x,y)$ Then $T_d = T_{d*}$ Proof: Since open sets are union of open balls, Take an open set in (X, d*), i.e. $\Omega \in T_d$. Then it is the union of open balls $\Omega = \bigcup B_{d} * (x, h)$ Suppose $B_{J}(x,h) = \{y \in X : d(x,y) < h\}$ $B_{d*}(x,h) = \{y \in X : d^{*}(x,y) < n\}$ Also, we know that $B_d(x, r|\lambda) \leq B_{dk}(x, n)$ as $y \in B(x, h|\lambda) \Rightarrow d(x, y) < \underline{h}$ $\Rightarrow \lambda d(x,y) < h$ "|x] - 'Bd $\Rightarrow d^*(x_1y) < h$ $\Rightarrow y \in B_{i*}(x, h)$ Now, since $B_{d}(x, h|\lambda) \subseteq B_{d}(x, h)$, we can say that $B_{\lambda}(x,h|\lambda) \leq \Omega$ for any $x \in X$ And hence by definition of open, Ω is open in d methic. Therefore JE E Ta (similar for other way)

Subspaces

